Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.696
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(19): e2401386121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38696471

RESUMO

In the meiotic prophase, programmed DNA double-strand breaks are repaired by meiotic recombination. Recombination-defective meiocytes are eliminated to preserve genome integrity in gametes. BRCA1 is a critical protein in somatic homologous recombination, but studies have suggested that BRCA1 is dispensable for meiotic recombination. Here we show that BRCA1 is essential for meiotic recombination. Interestingly, BRCA1 also has a function in eliminating recombination-defective oocytes. Brca1 knockout (KO) rescues the survival of Dmc1 KO oocytes far more efficiently than removing CHK2, a vital component of the DNA damage checkpoint in oocytes. Mechanistically, BRCA1 activates chromosome asynapsis checkpoint by promoting ATR activity at unsynapsed chromosome axes in Dmc1 KO oocytes. Moreover, Brca1 KO also rescues the survival of asynaptic Spo11 KO oocytes. Collectively, our study not only unveils an unappreciated role of chromosome asynapsis in eliminating recombination-defective oocytes but also reveals the dual functions of BRCA1 in safeguarding oocyte genome integrity.


Assuntos
Proteína BRCA1 , Proteínas de Ciclo Celular , Camundongos Knockout , Oócitos , Oócitos/metabolismo , Animais , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Feminino , Camundongos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Meiose/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Quebras de DNA de Cadeia Dupla , Pareamento Cromossômico/genética , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/genética , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Recombinação Genética , Recombinação Homóloga , Instabilidade Genômica
2.
Cell Commun Signal ; 22(1): 235, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643161

RESUMO

BACKGROUND: Antral follicles consist of an oocyte cumulus complex surrounding by somatic cells, including mural granulosa cells as the inner layer and theca cells as the outsider layer. The communications between oocytes and granulosa cells have been extensively explored in in vitro studies, however, the role of oocyte-derived factor GDF9 on in vivo antral follicle development remains elusive due to lack of an appropriate animal model. Clinically, the phenotype of GDF9 variants needs to be determined. METHODS: Whole-exome sequencing (WES) was performed on two unrelated infertile women characterized by an early rise of estradiol level and defect in follicle enlargement. Besides, WES data on 1,039 women undergoing ART treatment were collected. A Gdf9Q308X/S415T mouse model was generated based on the variant found in one of the patients. RESULTS: Two probands with bi-allelic GDF9 variants (GDF9His209GlnfsTer6/S428T, GDF9Q321X/S428T) and eight GDF9S428T heterozygotes with normal ovarian response were identified. In vitro experiments confirmed that these variants caused reduction of GDF9 secretion, and/or alleviation in BMP15 binding. Gdf9Q308X/S415T mouse model was constructed, which recapitulated the phenotypes in probands with abnormal estrogen secretion and defected follicle enlargement. Further experiments in mouse model showed an earlier expression of STAR in small antral follicles and decreased proliferative capacity in large antral follicles. In addition, RNA sequencing of granulosa cells revealed the transcriptomic profiles related to defective follicle enlargement in the Gdf9Q308X/S415T group. One of the downregulated genes, P4HA2 (a collagen related gene), was found to be stimulated by GDF9 protein, which partly explained the phenotype of defective follicle enlargement. CONCLUSIONS: GDF9 bi-allelic variants contributed to the defect in antral follicle development. Oocyte itself participated in the regulation of follicle development through GDF9 paracrine effect, highlighting the essential role of oocyte-derived factors on ovarian response.


Assuntos
Infertilidade Feminina , Camundongos , Animais , Feminino , Humanos , Infertilidade Feminina/metabolismo , Folículo Ovariano/metabolismo , Oócitos/química , Oócitos/metabolismo , Células da Granulosa/metabolismo , Estrogênios/metabolismo , Fator 9 de Diferenciação de Crescimento/genética , Fator 9 de Diferenciação de Crescimento/análise , Fator 9 de Diferenciação de Crescimento/metabolismo
3.
PLoS One ; 19(4): e0302444, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635580

RESUMO

Our objective was to understand how maternal age influences the mitochondrial population and ATP content of in vivo matured bovine oocytes. We hypothesized that in vivo matured oocytes from older cows would have altered mitochondrial number and distribution patterns and lower cytoplasmic ATP content compared to the oocytes obtained from younger cows. Follicles ≥5mm were ablated in old cows (13 to 22 yrs, Old Group, n = 7) and their younger daughters (4 to 10 years old, Young Group; n = 7) to induce the emergence of a new follicular wave. Cows were treated twice daily with eight doses of FSH starting 24 hr after ablation (Day 0, day of wave emergence). Prostaglandin F2alpha (PGF) was given on Days 3 and 3.5, LH on Day 4.5, and cumulus-oocyte-complexes were collected 18-20 hours post-LH by ultrasound-guided follicular aspiration. Oocytes were either processed for staining with MitoTracker Deep Red FM or for ATP assay. Stained oocytes were imaged with a Zeiss LSM 710 confocal microscope, and mitochondria were segmented in the oocyte volume sets using Imaris Pro 7.4. In vivo matured oocytes obtained from old cows were similar in morphological grades to those from young cows. However, the oocytes of COC from older cows had 23% less intracellular ATP (27.4±1.9 vs 35.7±2.2 pmol per oocyte, P = 0.01) than those of young cows. Furthermore, the average volume of individual mitochondria, indicated by the number of image voxels, was greater (P<0.05) in oocytes from older cows than in those from younger cows. Oocytes from older cows also tended to have a greater number of mitochondrial clusters (P = 0.06) and an increased number of clusters in the central region of the oocytes (P = 0.04) compared to those from younger cows. In conclusion, our study demonstrated that maternal age was associated with a decrease in the cytoplasmic ATP content of in vivo mature oocytes and an altered distribution of mitochondrial structures. These findings suggest that maternal age may negatively influence the developmental competence of oocytes from older cows.


Assuntos
Fertilização in vitro , Técnicas de Maturação in Vitro de Oócitos , Feminino , Bovinos , Animais , Idade Materna , Fertilização in vitro/veterinária , Oócitos/metabolismo , Mitocôndrias , Trifosfato de Adenosina/metabolismo
4.
Stem Cell Res Ther ; 15(1): 115, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38650029

RESUMO

BACKGROUND: Studies have shown that chemotherapy and radiotherapy can cause premature ovarian failure and loss of fertility in female cancer patients. Ovarian cortex cryopreservation is a good choice to preserve female fertility before cancer treatment. Following the remission of the disease, the thawed ovarian tissue can be transplanted back and restore fertility of the patient. However, there is a risk to reintroduce cancer cells in the body and leads to the recurrence of cancer. Given the low success rate of current in vitro culture techniques for obtaining mature oocytes from primordial follicles, an artificial ovary with primordial follicles may be a good way to solve this problem. METHODS: In the study, we established an artificial ovary model based on the participation of mesenchymal stem cells (MSCs) to evaluate the effect of MSCs on follicular development and oocyte maturation. P2.5 mouse ovaries were digested into single cell suspensions and mixed with bone marrow derived mesenchymal stem cells (BM-MSCs) at a 1:1 ratio. The reconstituted ovarian model was then generated by using phytohemagglutinin. The phenotype and mechanism studies were explored by follicle counting, immunohistochemistry, immunofluorescence, in vitro maturation (IVM), in vitro fertilization (IVF), real-time quantitative polymerase chain reaction (RT-PCR), and Terminal-deoxynucleotidyl transferase mediated nick end labeling(TUNEL) assay. RESULTS: Our study found that the addition of BM-MSCs to the reconstituted ovary can enhance the survival of oocytes and promote the growth and development of follicles. After transplanting the reconstituted ovaries under kidney capsules of the recipient mice, we observed normal folliculogenesis and oocyte maturation. Interestingly, we found that BM-MSCs did not contribute to the formation of follicles in ovarian aggregation, nor did they undergo proliferation during follicle growth. Instead, the cells were found to be located around growing follicles in the reconstituted ovary. When theca cells were labeled with CYP17a1, we found some overlapped staining with green fluorescent protein(GFP)-labeled BM-MSCs. The results suggest that BM-MSCs may participate in directing the differentiation of theca layer in the reconstituted ovary. CONCLUSIONS: The presence of BM-MSCs in the artificial ovary was found to promote the survival of ovarian cells, as well as facilitate follicle formation and development. Since the cells didn't proliferate in the reconstituted ovary, this discovery suggests a potential new and safe method for the application of MSCs in clinical fertility preservation by enhancing the success rate of cryo-thawed ovarian tissues after transplantation.


Assuntos
Células-Tronco Mesenquimais , Oócitos , Ovário , Feminino , Animais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Ovário/citologia , Oócitos/citologia , Oócitos/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Folículo Ovariano/metabolismo , Folículo Ovariano/citologia
5.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674059

RESUMO

The oocyte competence of prepubertal females is lower compared to that of adults, mainly because they originate from small follicles. In adult females, the germinal vesicle (GV) and epidermal growth factor receptor (EGFR) have been associated with oocyte competence. This study aimed to analyze GV chromatin configuration and EGFR expression in prepubertal goat and sheep oocytes obtained from small (<3 mm) and large (≥3 mm) follicles and compare them with those from adults. GV chromatin was classified from diffuse to condensed as GV1, GVn, and GVc for goats and NSN, SN, and SNE for sheep. EGFR was quantified in cumulus cells (CCs) by Western blotting and in oocytes by immunofluorescence. Oocytes from prepubertal large follicles and adults exhibited highly condensed chromatin in goats (71% and 69% in GVc, respectively) and sheep (59% and 75% in SNE, respectively). In both species, EGFR expression in CCs and oocytes was higher in prepubertal large follicles than in small ones. In adult females, EGFR expression in oocytes was higher than in prepubertal large follicles. In conclusion, GV configuration and EGFR expression in CCs and oocytes were higher in the large than small follicles of prepubertal females.


Assuntos
Cromatina , Células do Cúmulo , Receptores ErbB , Cabras , Oócitos , Animais , Oócitos/metabolismo , Receptores ErbB/metabolismo , Feminino , Células do Cúmulo/metabolismo , Ovinos , Cromatina/metabolismo , Folículo Ovariano/metabolismo
6.
Sci Total Environ ; 925: 171790, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508253

RESUMO

Fenvalerate (FEN), a type II pyrethroid pesticide, finds extensive application in agriculture, graziery and public spaces for pest control, resulting in severe environmental pollution. As an environmental endocrine disruptor with estrogen-like activity, exposure to FEN exhibited adverse effects on ovarian functions. Additionally, the presence of the metabolite of FEN in women's urine shows a positive association with the risk of primary ovarian insufficiency (POI). In mammals, the primordial follicle pool established during the early life serves as a reservoir for storing all available oocytes throughout the female reproductive life. The initial size of the primordial follicle pool and the rate of its depletion affect the occurrence of POI. Nevertheless, there is very limited research about the impact of FEN exposure on primordial folliculogenesis. In this study, pregnant mice were orally administrated with 0.2, 2.0 and 20.0 mg/kg FEN from 16.5 to 18.5 days post-coitus (dpc). Ovaries exposed to FEN exhibited the presence of large germ-cell cysts that persist on 1 days post-parturition (1 dpp), followed by a significant reduction in the total number of oocytes in pups on 5 dpp. Moreover, the levels of m6A-RNA and its associated proteins METTL3 and YTHDF2 were significantly increased in the ovaries exposed to FEN. The increased YTHDF2 promoted the assembly of the cytoplasmic processing bodies (P-body) in the oocytes, accompanied with altered expression of transcripts. Additionally, when YTHDF2 was knocked-down in fetal ovary cultures, the primordial folliculogenesis disrupted by FEN exposure was effectively restored. Further, the female offspring exposed to FEN displayed ovarian dysfunctions reminiscent of POI in early adulthood, characterized by decreases in ovarian coefficient and female hormone levels. Therefore, the present study revealed that exposure to FEN during late pregnancy disrupted primordial folliculogenesis by YTHDF2-mediated P-body assembly, causing enduring adverse effects on female fertility.


Assuntos
Nitrilas , Reserva Ovariana , Piretrinas , Humanos , Gravidez , Animais , Feminino , Camundongos , Adulto , Animais Recém-Nascidos , Corpos de Processamento , Oócitos/metabolismo , Piretrinas/toxicidade , Piretrinas/metabolismo , Mamíferos/metabolismo , Metiltransferases , Proteínas de Ligação a RNA
7.
J Ovarian Res ; 17(1): 65, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500173

RESUMO

BACKGROUND: It is well described that circulating progesterone (P4) plays a key role in several reproductive events such as oocyte maturation. However, during diestrus, when circulating P4 is at the highest concentrations, little is known about its local impact on the follicular cells such as intrafollicular P4 concentration due to corpus luteum (CL) presence within the same ovary. Based on that, our hypothesis is that the CL presence in the ovary during diestrus alters intrafollicular P4 concentrations, oocyte competence acquisition, follicular cells gene expression, and small extracellular vesicles (sEVs) miRNAs contents. RESULTS: P4 hormonal analysis revealed that ipsilateral to the CL follicular fluid (iFF) presented higher P4 concentration compared to contralateral follicular fluid (cFF). Furthermore, oocyte maturation and miRNA biogenesis pathways transcripts (ADAMTS-1 and AGO2, respectively) were increased in cumulus and granulosa cells of iFF, respectively. Nevertheless, a RT-PCR screening of 382 miRNAs showed that three miRNAs were upregulated and two exclusively expressed in sEVs from iFF and are predicted to regulate cell communication pathways. Similarly, seven miRNAs were higher and two exclusively expressed from cFF sEVs and are predicted to modulate proliferation signaling pathways. CONCLUSION: In conclusion, intrafollicular P4 concentration is influenced by the presence of the CL and modulates biological processes related to follicular cell development and oocyte competence, which may influence the oocyte quality. Altogether, these results are crucial to improve our knowledge about the follicular microenvironment involved in oocyte competence acquisition.


Assuntos
Vesículas Extracelulares , MicroRNAs , Feminino , Animais , Bovinos , Líquido Folicular/metabolismo , Progesterona/metabolismo , Folículo Ovariano/metabolismo , Ovário/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Oócitos/metabolismo , Corpo Lúteo/metabolismo , Vesículas Extracelulares/genética , Expressão Gênica
8.
J Biomed Sci ; 31(1): 31, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509545

RESUMO

BACKGROUND: The mammalian ovary is a unique organ that displays a distinctive feature of cyclic changes throughout the entire reproductive period. The estrous/menstrual cycles are associated with drastic functional and morphological rearrangements of ovarian tissue, including follicular development and degeneration, and the formation and subsequent atrophy of the corpus luteum. The flawless execution of these reiterative processes is impossible without the involvement of programmed cell death (PCD). MAIN TEXT: PCD is crucial for efficient and careful clearance of excessive, depleted, or obsolete ovarian structures for ovarian cycling. Moreover, PCD facilitates selection of high-quality oocytes and formation of the ovarian reserve during embryonic and juvenile development. Disruption of PCD regulation can heavily impact the ovarian functions and is associated with various pathologies, from a moderate decrease in fertility to severe hormonal disturbance, complete loss of reproductive function, and tumorigenesis. This comprehensive review aims to provide updated information on the role of PCD in various processes occurring in normal and pathologic ovaries. Three major events of PCD in the ovary-progenitor germ cell depletion, follicular atresia, and corpus luteum degradation-are described, alongside the detailed information on molecular regulation of these processes, highlighting the contribution of apoptosis, autophagy, necroptosis, and ferroptosis. Ultimately, the current knowledge of PCD aberrations associated with pathologies, such as polycystic ovarian syndrome, premature ovarian insufficiency, and tumors of ovarian origin, is outlined. CONCLUSION: PCD is an essential element in ovarian development, functions and pathologies. A thorough understanding of molecular mechanisms regulating PCD events is required for future advances in the diagnosis and management of various disorders of the ovary and the female reproductive system in general.


Assuntos
Atresia Folicular , Ovário , Animais , Feminino , Humanos , Ovário/fisiologia , Atresia Folicular/fisiologia , Apoptose/genética , Morte Celular/fisiologia , Oócitos/metabolismo , Mamíferos
9.
Biochem Biophys Res Commun ; 706: 149747, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38479243

RESUMO

Nobiletin is a natural flavonoid found in citrus fruits with beneficial effects, including anti-inflammatory, anti-cancer and anti-oxidation effects. The aim of this study was to investigate whether nobiletin improves mitochondrial function in porcine oocytes and examine the underlying mechanism. Oocytes enclosed by cumulus cells were cultured in TCM-199 for 44 h with 0.1% dimethyl sulfoxide (control), or supplemented with 5, 10, 25, and 50 µM of nobiletin (Nob5, Nob10, Nob25, and Nob50, respectively). Oocyte maturation rate was significantly enhanced in Nob10 (70.26 ± 0.45%) compared to the other groups (control: 60.12 ± 0.47%; Nob5: 59.44 ± 1.63%; Nob25: 63.15 ± 1.38%; Nob50: 46.57 ± 1.19%). The addition of nobiletin reduced the levels of reactive oxygen species and increased glutathione levels. Moreover, Nob10 promoted mitochondrial biogenesis by upregulating the protein levels of sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α). This resulted in an increase in the number of active mitochondria, mitochondrial DNA copy number, mitochondrial membrane potential, and ATP production, thereby enhancing mitochondrial function. The protein level of p53 decreased, followed by the phosphorylation of B-cell lymphoma 2, suggesting a reduction in mitochondria-mediated apoptosis in the Nob10 group. Additionally, the release of cytochrome c from the mitochondria was significantly diminished along with a decrease in the protein expression of caspase 3. Thus, nobiletin has a great potential to promote the in vitro maturation of porcine oocytes by suppressing oxidative stress and promoting mitochondrial function through the upregulation of the SIRT1/PGC-1α signaling pathway.


Assuntos
Flavonas , Mitocôndrias , Sirtuína 1 , Animais , Suínos , Sirtuína 1/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais , Oócitos/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
10.
PLoS One ; 19(3): e0298316, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38466703

RESUMO

To identify markers of oocyte competence, we compared the biochemical characteristics of fluid and cells from follicles containing oocytes with different capacities to form an embryo. Follicles (5-6 mm) were dissected, and follicular fluid (FF), granulosa cells (GC), cumulus cells (CC) from immature and mature cumulus-oocyte-complexes (COC) were individually collected. The oocytes were matured, fertilized, and cultured individually until day 8 (D8) of development. On D8, the samples were grouped according to embryo production into those that gave rise to blastocysts (EMB) and those that did not reach the blastocyst stage (NEMB). In CCs from immature and mature COCs and GCs, expression of CASP3, SERPINE2, VCAN, LUM, FSHR, EGFR, PGR, and GHR genes was quantified. Cell-free DNA (cfDNA), progesterone, and estradiol concentrations in the FF were determined. Data were analyzed by Mann-Whitney U test (GraphPad Prism 9). GHR was highly expressed in immature CCs from the EMB group, whereas CASP3 was highly expressed in mature CCs from the NEMB group (P<0.05). During maturation, the expression of CASP3 and GHR genes increased only in the NEMB group. ART2 cfDNA was highly detected in FF of the NEMB compared to the EMB group. Progesterone concentration was similar between the groups, whereas estradiol concentration was higher (P<0.05) in the EMB than in the NEMB group. It was concluded that a higher level of GHR transcripts in immature CCs, lower CASP3 expression in CCs from matured COCs, lower levels of ART2, and higher estradiol concentrations in FF may indicate oocytes with greater potential for development.


Assuntos
Ácidos Nucleicos Livres , Progesterona , Feminino , Bovinos , Animais , Caspase 3/metabolismo , Progesterona/metabolismo , Serpina E2/metabolismo , Oócitos/metabolismo , Líquido Folicular/metabolismo , Estradiol/metabolismo , Células do Cúmulo/metabolismo , Ácidos Nucleicos Livres/análise
11.
Biomolecules ; 14(3)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38540777

RESUMO

During mammalian fertilization, repetitive intracellular Ca2+ increases known as Ca2+ oscillations occur. These oscillations are considered crucial for successful fertilization and subsequent embryonic development. Numerous researchers have endeavored to elucidate the factors responsible for inducing Ca2+ oscillations across various mammalian species. Notably, sperm-specific phospholipase C zeta (PLCζ) emerged as a prominent candidate capable of initiating Ca2+ oscillations, particularly in mammals. Genetic mutation of PLCζ in humans results in the absence of Ca2+ oscillations in mouse oocytes. Recent studies further underscored PLCζ's significance, revealing that sperm from PLCζ-deficient (Plcz1-/-) mice fail to induce Ca2+ oscillations upon intracytoplasmic sperm injection (ICSI). Despite these findings, observations from in vitro fertilization (IVF) experiments using Plcz1-/- sperm revealed some residual intracellular Ca2+ increases and successful oocyte activation, hinting at potential alternative mechanisms. In this review, we introduced the current hypothesis surrounding oocyte activation in mammals, informed by contemporary literature, and probed into the enigmatic mechanisms underlying mammalian fertilization-induced oocyte activation.


Assuntos
Sinalização do Cálcio , Sêmen , Gravidez , Feminino , Masculino , Humanos , Camundongos , Animais , Fosfoinositídeo Fosfolipase C/genética , Fosfoinositídeo Fosfolipase C/metabolismo , Fosfoinositídeo Fosfolipase C/farmacologia , Sêmen/metabolismo , Oócitos/metabolismo , Espermatozoides/metabolismo , Fosfolipases Tipo C/metabolismo , Mamíferos/metabolismo
12.
J Immunother Cancer ; 12(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38485187

RESUMO

BACKGROUND: Sperm acrosomal SLLP1 binding (SAS1B) protein is found in oocytes, which is necessary for sperm-oocyte interaction, and also in uterine and pancreatic cancers. Anti-SAS1B antibody-drug conjugates (ADCs) arrested growth in these cancers. However, SAS1B expression in cancers and normal tissues has not been characterized. We hypothesized that SAS1B is expressed on the surface of other common solid cancer cells, but not on normal tissue cells, and might be selectively targeted therapeutically. METHODS: SAS1B expression in human normal and cancer tissues was determined by immunohistochemistry, and complementary DNA (cDNA) libraries were employed to PCR amplify human SAS1B and its transcripts. Monoclonal antibodies (mAbs) to human SAS1B were generated using mouse hybridomas. SAS1B deletion constructs were developed to map SAS1B's epitope, enabling the creation of a blocking peptide. Indirect immunofluorescence (IIF) of human transfected normal and cancer cells was performed to assess SAS1B expression. SAS1B intracellular versus surface expression in normal and tumor tissues was evaluated by flow cytometry after staining with anti-SAS1B mAb, with specificity confirmed with the blocking peptide. Human cancer lines were treated with increasing mAb and ADC concentrations. ATP was quantitated as a measure of cell viability. RESULTS: SAS1B expression was identified in a subset of human cancers and the cytoplasm of pancreatic islet cells. Two new SAS1B splice variants were deduced. Monoclonal antibodies were generated to SAS1B splice variant A. The epitope for mAbs SB2 and SB5 is between SAS1B amino acids 32-39. IIF demonstrated intracellular SAS1B expression in transfected kidney cells and on the cell surface of squamous cell lung carcinoma. Flow cytometry demonstrated intracellular SAS1B expression in all tumors and some normal cells. However, surface expression of SAS1B was identified only on cancer cells. SB2 ADC mediated dose-dependent cytotoxic killing of multiple human cancer lines. CONCLUSION: SAS1B is a novel cancer-oocyte antigen with cell surface expression restricted to cancer cells. In vitro, it is an effective target for antibody-mediated cancer cell lysis. These findings support further exploration of SAS1B as a potential therapeutic cancer target in multiple human cancers, either with ADC or as a chimeric antigen receptor-T (CAR-T) cell target.


Assuntos
Imunoconjugados , Neoplasias , Masculino , Humanos , Camundongos , Animais , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Sêmen , Oócitos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Epitopos , Peptídeos/metabolismo
13.
Toxicol Appl Pharmacol ; 485: 116910, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521372

RESUMO

3-nitropropionic acid (3-NPA), a toxic metabolite produced by mold, is mainly found in moldy sugarcane. 3-NPA inhibits the activity of succinate dehydrogenase that can induce oxidative stress injury in cells, reduce ATP production and induce oxidative stress in mouse ovaries to cause reproductive disorders. Ursolic acid (UA) has a variety of biological activities and is a pentacyclic triterpene compound found in many plants. This experiment aimed to investigate the cytotoxicity of 3-NPA during mouse oocyte in vitro maturation and the protective effects of UA on oocytes challenged with 3-NPA. The results showed that UA could alleviate 3-NPA-induced oocyte meiotic maturation failure. Specifically, 3-NPA induced a decrease in the first polar body extrusion rate of oocytes, abnormal distribution of cortical granules, and an increase in the proportion of spindle abnormalities. In addition, 3-NPA caused mitochondrial dysfunction and induced oxidative stress, including decreases in the GSH, mitochondrial membrane potential and ATP levels, and increases in the ROS levels, and these effects led to apoptosis and autophagy. The addition of UA could significantly improve the adverse effects caused by 3-NPA. In general, our data show that 3-NPA affects the normal development of oocytes during the in vitro culture, and the addition of UA can effectively repair the damage caused by 3-NPA to oocytes.


Assuntos
Meiose , Nitrocompostos , Oócitos , Estresse Oxidativo , Propionatos , Triterpenos , Ácido Ursólico , Animais , Nitrocompostos/toxicidade , Propionatos/toxicidade , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Feminino , Meiose/efeitos dos fármacos , Camundongos , Triterpenos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Autofagia/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Camundongos Endogâmicos ICR
14.
Pflugers Arch ; 476(5): 861-869, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38507112

RESUMO

Phosphate (Pi) is an essential nutrient, and its plasma levels are under tight hormonal control. Uphill transport of Pi into cells is mediated by the two Na-dependent Pi transporter families SLC34 and SLC20. The molecular identity of a potential Pi export pathway is controversial, though XPR1 has recently been suggested by Giovannini and coworkers to mediate Pi export. We expressed XPR1 in Xenopus oocytes to determine its functional characteristics. Xenopus isoforms of proteins were used to avoid species incompatibility. Protein tagging confirmed the localization of XPR1 at the plasma membrane. Efflux experiments, however, failed to detect translocation of Pi attributable to XPR1. We tested various counter ions and export medium compositions (pH, plasma) as well as potential protein co-factors that could stimulate the activity of XPR1, though without success. Expression of truncated XPR1 constructs and individual domains of XPR1 (SPX, transmembrane core, C-terminus) demonstrated downregulation of the uptake of Pi mediated by the C-terminal domain of XPR1. Tethering the C-terminus to the transmembrane core changed the kinetics of the inhibition and the presence of the SPX domain blunted the inhibitory effect. Our observations suggest a regulatory role of XPR1 in cellular Pi handling rather than a function as Pi exporter. Accordingly, XPR1 senses intracellular Pi levels via its SPX domain and downregulates cellular Pi uptake via the C-terminal domain. The molecular identity of a potential Pi export protein remains therefore elusive.


Assuntos
Homeostase , Fosfatos , Animais , Humanos , Membrana Celular/metabolismo , Homeostase/fisiologia , Oócitos/metabolismo , Fosfatos/metabolismo , Xenopus laevis , Receptor do Retrovírus Politrópico e Xenotrópico
15.
Sci Rep ; 14(1): 4808, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413710

RESUMO

Transforming acidic acid coiled-coil protein 3 (TACC3) and cytoskeleton associated protein 5 (cKAP5; or colonic hepatic tumor overexpressed gene, chTOG) are vital for spindle assembly and stabilization initiated through TACC3 Aurora-A kinase interaction. Here, TACC3 and cKAP5/chTOG localization with monospecific antibodies is investigated in eGFP-centrin-2- expressing mouse meiotic spermatocytes. Both proteins bind spermatocyte spindle poles but neither kinetochore nor interpolar microtubules, unlike in mitotic mouse fibroblasts or female meiotic oocyte spindles. Spermatocytes do not display a liquid-like spindle domain (LISD), although fusing them into maturing oocytes generates LISD-like TACC3 condensates around sperm chromatin but sparse microtubule assembly. Microtubule inhibitors do not reduce TACC3 and cKAP5/chTOG spindle pole binding. MLN 8237 Aurora-A kinase inhibitor removes TACC3, not cKAP5/chTOG, disrupting spindle organization, chromosome alignment, and impacting spindle pole γ-tubulin intensity. The LISD disruptor 1,6-hexanediol abolished TACC3 in spermatocytes, impacting spindle bipolarity and chromosome organization. Cold microtubule disassembly and rescue experiments in the presence of 1,6-hexanediol reinforce the concept that spermatocyte TACC3 spindle pole presence is not required for spindle pole microtubule assembly. Collectively, meiotic spermatocytes without a LISD localize TACC3 and cKAP5/chTOG exclusively at spindle poles to support meiotic spindle pole stabilization during male meiosis, different from either female meiosis or mitosis.


Assuntos
Aurora Quinase A , Glicóis , Proteínas Associadas aos Microtúbulos , Animais , Feminino , Masculino , Camundongos , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Meiose , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Oócitos/metabolismo , Sêmen/metabolismo , Fuso Acromático/metabolismo , Polos do Fuso/metabolismo
16.
G3 (Bethesda) ; 14(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38333961

RESUMO

A properly regulated series of developmental and meiotic events must occur to ensure the successful production of gametes. In Drosophila melanogaster ovaries, these early developmental and meiotic events include the production of the 16-cell cyst, meiotic entry, synaptonemal complex (SC) formation, recombination, and oocyte specification. In order to identify additional genes involved in early oocyte development and meiosis, we reanalyzed 3 published single-cell RNA-seq datasets from Drosophila ovaries, using vasa (germline) together with c(3)G, cona, and corolla (SC) as markers. Our analysis generated a list of 2,743 co-expressed genes. Many known SC-related and early oocyte development genes fell within the top 500 genes on this list, as ranked by the abundance and specificity of each gene's expression across individual analyses. We tested 526 available RNAi lines containing shRNA constructs in germline-compatible vectors representing 331 of the top 500 genes. We assessed targeted ovaries for SC formation and maintenance, oocyte specification, cyst development, and double-strand break dynamics. Six uncharacterized genes exhibited early developmental defects. SC and developmental defects were observed for additional genes not well characterized in the early ovary. Interestingly, in some lines with developmental delays, meiotic events could still be completed once oocyte specificity occurred indicating plasticity in meiotic timing. These data indicate that a transcriptomics approach can be used to identify genes involved in functions in a specific cell type in the Drosophila ovary.


Assuntos
Cistos , Proteínas de Drosophila , Animais , Feminino , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Interferência de RNA , Recombinação Genética , Complexo Sinaptonêmico , Meiose/genética , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Oócitos/metabolismo , Perfilação da Expressão Gênica , Cistos/genética , Cistos/metabolismo
17.
Genetics ; 226(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38345426

RESUMO

In the fruit fly Drosophila melanogaster, two cells in a cyst of 16 interconnected cells have the potential to become the oocyte, but only one of these will assume an oocyte fate as the cysts transition through regions 2a and 2b of the germarium. The mechanism of specification depends on a polarized microtubule network, a dynein dependent Egl:BicD mRNA cargo complex, a special membranous structure called the fusome and its associated proteins, and the translational regulator orb. In this work, we have investigated the role of orb and the fusome in oocyte specification. We show here that specification is a stepwise process. Initially, orb mRNAs accumulate in the two pro-oocytes in close association with the fusome. This association is accompanied by the activation of the orb autoregulatory loop, generating high levels of Orb. Subsequently, orb mRNAs become enriched in only one of the pro-oocytes, the presumptive oocyte, and this is followed, with a delay, by Orb localization to the oocyte. We find that fusome association of orb mRNAs is essential for oocyte specification in the germarium, is mediated by the orb 3' UTR, and requires Orb protein. We also show that the microtubule minus end binding protein Patronin functions downstream of orb in oocyte specification. Finally, in contrast to a previously proposed model for oocyte selection, we find that the choice of which pro-oocyte becomes the oocyte does not seem to be predetermined by the amount of fusome material in these two cells, but instead depends upon a competition for orb gene products.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Proteínas de Drosophila/metabolismo , Oócitos/metabolismo , Oogênese/genética
18.
Front Endocrinol (Lausanne) ; 15: 1346842, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390208

RESUMO

Background: Poor oocyte quality remains one of the major challenges for polycystic ovary syndrome (PCOS) patients during in vitro fertilization (IVF) treatment. Granulosa cells (GCs) in PCOS display altered functions and could cause an unfavorable microenvironment for oocyte growth and maturation. Ferroptosis is a new form of programmed cell death, but its role in PCOS has been largely unclarified. Methods: Ferroptosis-related differentially expressed genes (DEGs) of GCs in women with PCOS were identified by bioinformatic analyses of GSE155489 and GSE168404 datasets. Functional enrichment analyses were conducted using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Core ferroptosis-related genes were further screened by random forest, and evaluated for diagnostic value by receiver operating characteristic curve analyses. Gene expression was validated by real-time quantitative polymerase chain reaction of collected GC samples, and analyzed for association with oocyte quality. In addition, gene regulatory network was constructed based on predicted RNA interactions and transcription factors, while potential therapeutic compounds were screened through molecular docking with crystallographic protein structures. Results: A total of 14 ferroptosis-related DEGs were identified. These DEGs were mainly enriched in reactive oxygen species metabolic process, mitochondrial outer membrane, antioxidant activity as well as ferroptosis and adipocytokine signaling pathways. Eight core ferroptosis-related genes (ATF3, BNIP3, DDIT4, LPIN1, NOS2, NQO1, SLC2A1 and SLC2A6) were further selected in random forest model, which showed high diagnostic performance for PCOS. Seven of them were validated in GC samples, and five were found to be significantly and positively correlated with one or more oocyte quality parameters in PCOS patients, including oocyte retrieval rate, mature oocyte rate, normal fertilization rate, and good-quality embryo rate. Gene regulatory network revealed JUN and HMGA1 as two important transcription factors, while dicoumarol and flavin adenine dinucleotide were predicted as small molecules with therapeutic potential. Conclusions: This is the first comprehensive report to study the differential expression of ferroptosis-related genes in GCs of PCOS and their clinical relevance with oocyte quality. Our findings could provide novel insights on the potential role of GC ferroptosis in PCOS pathogenesis, diagnosis, and targeted treatment.


Assuntos
Ferroptose , Síndrome do Ovário Policístico , Humanos , Feminino , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Ferroptose/genética , Simulação de Acoplamento Molecular , Células da Granulosa/metabolismo , Oócitos/metabolismo , Fatores de Transcrição/metabolismo , Microambiente Tumoral , Fosfatidato Fosfatase
19.
Endocrinology ; 165(4)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38375912

RESUMO

Polycystic ovary syndrome (PCOS) is a common endocrine disorder associated with infertility and poor reproductive outcomes. The follicular fluid (FF) microenvironment plays a crucial role in oocyte development. This review summarizes evidence elucidating the alterations in FF composition in PCOS. Various studies demonstrated a pronounced proinflammatory milieu in PCOS FF, characterized by increased levels of cytokines, including but not limited to interleukin-6 (IL-6), tumor necrosis factor α, C-reactive protein, and IL-1ß, concomitant with a reduction in anti-inflammatory IL-10. T lymphocytes and antigen-presenting cells are dysregulated in PCOS FF. PCOS FF exhibit heightened reactive oxygen species production and the accumulation of lipid peroxidation byproducts, and impaired antioxidant defenses. Multiple microRNAs are dysregulated in PCOS FF, disrupting signaling critical to granulosa cell function. Proteomic analysis reveals changes in pathways related to immune responses, metabolic perturbations, angiogenesis, and hormone regulation. Metabolomics identify disturbances in glucose metabolism, amino acids, lipid profiles, and steroid levels with PCOS FF. Collectively, these pathological alterations may adversely affect oocyte quality, embryo development, and fertility outcomes. Further research on larger cohorts is needed to validate these findings and to forge the development of prognostic biomarkers of oocyte developmental competence within FF. Characterizing the follicular environment in PCOS is key to elucidating the mechanisms underlying subfertility in this challenging disorder.


Assuntos
Infertilidade , Síndrome do Ovário Policístico , Feminino , Humanos , Síndrome do Ovário Policístico/metabolismo , Proteômica , Infertilidade/metabolismo , Oócitos/metabolismo , Citocinas/metabolismo , Líquido Folicular/metabolismo , Microambiente Tumoral
20.
Cell Commun Signal ; 22(1): 135, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374066

RESUMO

BACKGROUND: Ovarian stimulation (OS) during assisted reproductive technology (ART) appears to be an independent factor influencing the risk of low birth weight (LBW). Previous studies identified the association between LBW and placenta deterioration, potentially resulting from disturbed genomic DNA methylation in oocytes caused by OS. However, the mechanisms by which OS leads to aberrant DNA methylation patterns in oocytes remains unclear. METHODS: Mouse oocytes and mouse parthenogenetic embryonic stem cells (pESCs) were used to investigate the roles of OS in oocyte DNA methylation. Global 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) levels were evaluated using immunofluorescence or colorimetry. Genome-wide DNA methylation was quantified using an Agilent SureSelectXT mouse Methyl-Seq. The DNA methylation status of mesoderm-specific transcript homologue (Mest) promoter region was analyzed using bisulfite sequencing polymerase chain reaction (BSP). The regulatory network between estrogen receptor alpha (ERα, ESR1) and DNA methylation status of Mest promoter region was further detected following the knockdown of ERα or ten-eleven translocation 2 (Tet2). RESULTS: OS resulted in a significant decrease in global 5mC levels and an increase in global 5hmC levels in oocytes. Further investigation revealed that supraphysiological ß-estradiol (E2) during OS induced a notable decrease in DNA 5mC and an increase in 5hmC in both oocytes and pESCs of mice, whereas inhibition of estrogen signaling abolished such induction. Moreover, Tet2 may be a direct transcriptional target gene of ERα, and through the ERα-TET2 axis, supraphysiological E2 resulted in the reduced global levels of DNA 5mC. Furthermore, we identified that MEST, a maternal imprinted gene essential for placental development, lost its imprinted methylation in parthenogenetic placentas originating from OS, and ERα and TET2 combined together to form a protein complex that may promote Mest demethylation. CONCLUSIONS: In this study, a possible mechanism of loss of DNA methylation in oocyte caused by OS was revealed, which may help increase safety and reduce epigenetic abnormalities in ART procedures.


Assuntos
Dioxigenases , Receptor alfa de Estrogênio , Camundongos , Feminino , Gravidez , Animais , Receptor alfa de Estrogênio/metabolismo , Placentação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo , Placenta/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Metilação de DNA , Oócitos/metabolismo , Indução da Ovulação , DNA/metabolismo , Estrogênios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA